
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Computer Forensics TutorialDisk File Systems (FAT16, FAT32,

NTFS)

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

This tutorial is intended as in-class laboratory exercise for computer forensics classes at the Polytechnic University

of Puerto Rico. It’s specifically designed to provide basic understanding on the functionalities and capabilities of

the tree most used file systems FAT16, FAT32, and NTFS. This document provides an inside or raw view of the

files systems structure and how it handles data. It first covers the creation of a lab environment using openly

available applications and the use of Hexadecimal Editors or Disk Editors to view and modify data.

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

28-08-2012

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Electronic Data, Forensics, File Systems, Hex Editor, Storage Device, Tutorial.

Jose M. Rodriguez , Dr. Jeff Duffany (Advisor)

Polytechnic University of Puerto Rico

377 Ponce De Leon

Hato Rey

San Juan, PR 00918 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Related Material

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-11-1-0174

206022

Form Approved OMB NO. 0704-0188

58924-CS-REP.9

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Alfredo Cruz

787-622-8000

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

Computer Forensics TutorialDisk File Systems (FAT16, FAT32, NTFS)

Report Title

ABSTRACT

This tutorial is intended as in-class laboratory exercise for computer forensics classes at the Polytechnic University of

Puerto Rico. It’s specifically designed to provide basic understanding on the functionalities and capabilities of the

tree most used file systems FAT16, FAT32, and NTFS. This document provides an inside or raw view of the files

systems structure and how it handles data. It first covers the creation of a lab environment using openly available

applications and the use of Hexadecimal Editors or Disk Editors to view and modify data.

Computer Forensics Tutorial

Disk File Systems (FAT16, FAT32, NTFS)

José M. Rodríguez Justiniano

Computer Science

Jeffrey L. Duffany, Ph.D.

Computer Science Department

Polytechnic University of Puerto Rico

Abstract This tutorial is intended as in-class

laboratory exercise for computer forensics classes

at the Polytechnic University of Puerto Rico. It’s

specifically designed to provide basic

understanding on the functionalities and

capabilities of the tree most used file systems

FAT16, FAT32, and NTFS. This document provides

an inside or raw view of the files systems structure

and how it handles data. It first covers the creation

of a lab environment using openly available

applications and the use of Hexadecimal Editors or

Disk Editors to view and modify data.

Key Terms Electronic Data, Forensics, File

Systems, Hex Editor, Storage Device, Tutorial.

INTRODUCTION

As defined a File System is a means to

organize data expected to be retained after a

program terminates by providing procedures to

store, retrieve and update data, as well as manage

the available space on the device which contains it.

File systems are used on data storage devices such

as hard disk drives, floppy disks, optical discs, or

flash memory storage devices to maintain the

physical location of the computer files.

The purpose of this tutorial is to provide a

basic understanding of the most used files systems

in the industry FAT16, FAT32 and NTFS. File

Systems are normally an abstraction on the

Operating Systems side, by using openly available

software we can develop a lab environment that can

be used to create and show the inner workings of

the file systems.

The tutorial is designed around three free and

openly available applications and they are:

 Oracle Virtual Box: is a general-purpose full

virtualizer for x86 hardware, targeted at server,

desktop and embedded use. Refer to Figure 1.

Figure 1

Oracle Virtual Box

 HxD: is a carefully designed and fast hex

editor which, additionally to raw disk editing

and modifying of main memory (RAM),

handles files of any size. Refer to Figure 2.

Figure 2

HxD Hex Editor

 FTK Imager: is a data preview and imaging

tool that lets you quickly assess electronic

evidence to determine if further analysis, can

also create perfect copies (forensic images) of

computer data without making changes to the

original evidence. Refer to Figure 3.

Figure 3

FTK Imager

DISK FILE SYSTEMS

A file system is the way in which files are

named and where they are placed logically for

storage and retrieval. The DOS, Windows, OS/2,

Macintosh, and UNIX-based operating systems all

have file systems in which files are placed

somewhere in a hierarchical (tree) structure. A file

is placed in a directory or subdirectory at the

desired place in the tree structure.

File systems specify conventions for naming

files. These conventions include the maximum

number of characters in a name, which characters

can be used, and, in some systems, how long the

file name suffix can be. A file system also includes

a format for specifying the path to a file through the

structure of directories.

LAB ENVIRONMENT SETUP

Lab environment is created so that there is

minimal impact on the user’s workstation. By using

Oracle Virtual Box we can create a virtual machine

that has multiple hard drives therefore creating 3

partitions respectively with FAT16, FAT32 and

NTFS file systems. Since is a best practice to work

with images instead of working directly with

production data, we use FTK Imager to create

images of the newly created partitions. After the

images are created we can also use FTK Imager to

mount the image files.

FILE ALLOCATION TABLE (FAT16/32)

FILE SYSTEMS

FAT16 was designed for Hard Drives that were

larger than 16MB. It uses a 16-Bit Cluster

addressing system that allows for Hard Drives sizes

up to 4GB.

It was used by later MS-DOS versions (Earlier

ones using FAT12), as well as Early Windows

Versions.

FAT16 has a maximum File Size of 4GB, and

a Maximum Volume Size of 4GB (On MS-DOS,

and Windows 9x, they only support up to 32KB

Clusters, making the maximum Volume Size they

can support 2GB). Maximum Number of files on a

FAT16 Volume is 65536, with the maximum

viewable number of files and folders in the Root is

512.[1]

FAT32 was created to supersede FAT16, and

was introduced by Windows 95 OSR2. It uses a 32-

Bit Addressing System for Disk Clusters.

Maximum file size on a FAT32 Volume is

4GB (A Problem now being encountered for those

with DVD Images, as FAT32 cannot handle them is

above 4GB), but the Maximum Volume Size is

under debate.

Windows XP will only format FAT32

Volumes up to 32GB; however, other utilities will

theoretically format FAT32 Volumes up to 8

Terabytes in size. However, if a FAT32 Primary

Partition is greater than 8GB, then there is no

guarantee that it will be bootable.

Maximum number of files on a FAT32

Volume is 4,177,920, with the maximum number of

Files and Folders standing at 65,534 per folder. [2]

FAT Root Directory, sometimes referred to as

the Root Folder, contains an entry for each file and

directory stored in the file system. This information

includes the file name, starting cluster number, and

file size. This information is changed whenever a

file is created or subsequently modified. Root

directory has a fixed size of 512 entries on a hard

disk and the size on a floppy disk depends. With

FAT32 it can be stored anywhere within the

partition, although in previous versions it is always

located immediately following the FAT region.

The primary task of the File Allocation Tables

is to keep track of the allocation status of clusters,

or logical groupings of sectors, on the disk drive.

There are four different possible FAT entries:

allocated (along with the address of the next cluster

associated with the file), unallocated, end of file,

and bad sector.

In order to provide redundancy in case of data

corruption, two FATs, FAT1 and FAT2, are stored

in the file system. FAT2 is a typically a duplicate of

FAT1. However, FAT mirroring can be disabled on

a FAT32 drive, thus enabling any of the FATs to

become the Primary FAT. This possibly leaves

FAT1 empty, which can be deceiving.

Data Area: The Boot Record, FATs, and Root

Directory are collectively referred to as the System

Area. The remaining space on the logical drive is

called the Data Area, which is where files are

actually stored. It should be noted that when a file

is deleted by the operating system, the data stored

in the Data Area remains intact until it is

overwritten.

Clusters: In order for FAT to manage files with

satisfactory efficiency, it groups sectors into larger

blocks referred to as clusters. A cluster is the

smallest unit of disk space that can be allocated to a

file, which is why clusters are often called

allocation units. Each cluster can be used by one

and only one resident file. Only the "data area" is

divided into clusters, the rest of the partition is

simply sectors. Cluster size is determined by the

size of the disk volume and every file must be

allocated an even number of clusters. Cluster sizing

has a significant impact on performance and disk

utilization. Larger cluster sizes result in more

wasted space because files are less likely to fill up

an even number of clusters.

The size of one cluster is specified in the Boot

Record and can range from a single sector (512

bytes) to 128 sectors (65536 bytes). The sectors in a

cluster are continuous; therefore each cluster is a

continuous block of space on the disk. Note that

only one file can be allocated to a cluster. Therefore

if a 1KB file is placed within a 32KB cluster there

are 31KB of wasted space. The formula for

determining clusters in a partition is (# of Sectors in

Partition) - (# of Sectors per Fat * 2) - (# of

Reserved Sectors)) / (# of Sectors per Cluster).

Wasted Sectors (a.k.a. partition slack) are a

result of the number of data sectors not being

evenly distributed by the cluster size. It's made up

of unused bytes left at the end of a file. Also, if the

partition as declared in the partition table is larger

than what is claimed in the Boot Record the volume

can be said to have wasted sectors. Small files on a

hard drive are the reason for wasted space and the

bigger the hard drive the more wasted space there

is. [3] Figure 4 illustrates the file system structure

for FAT16 and FAT32, both are extremely similar.

Figure 4

Structure of FAT16 and FAT32 File Systems

Boot Sector on non-partitioned devices, e.g.,

floppy disks, the boot sector is the first sector. For

partitioned devices such as hard drives, the first

sector is the Master Boot Record defining

partitions, while the first sector of partitions

formatted with a FAT file system is again the FAT

boot sector.

Fragmentation: the FAT file system does not

contain mechanisms which prevent newly written

files from becoming scattered across the partition.

Other file systems, e.g., HPFS, use free space

bitmaps that indicate used and available clusters,

which could then be quickly looked up in order to

find free contiguous areas. Another solution is the

linkage of all free clusters into one or more lists (as

is done in Unix file systems). Instead, the FAT has

to be scanned as an array to find free clusters,

which can lead to performance penalties with large

disks.

Table 1

Common Boot Sector Structure used by all

FAT versions[6]

Byte

Offset

Length

(bytes)

Description

0x00 3 Jump instruction. This instruction will
be executed and will skip past the rest of

the header if the partition is booted

from.

0x03 8 OEM Name (padded with spaces 0x20).
This value determines in which system

disk was formatted. Common examples

are IBM3.3, MSDOS5.0, mkdosfs, and

FreeDOS.

0x0B 2 Bytes per sector; the most common

value is 512. The BIOS Parameter Block
starts here.

0x0D 1 Sectors per cluster. Allowed values are

powers of two from 1 to 128.

0x0E 2 Reserved sector count. The number of
sectors before the first FAT in the file

system image. At least 1 for this sector,

usually 32 for FAT32.

0x10 1 Number of file allocation tables. Almost
always 2; RAM disks might use 1.

0x11 2 Maximum number of FAT12 or FAT16

root directory entries. 0 for FAT32,
where the root directory is stored in

ordinary data clusters.

0x13 2 Total sectors

0x15 1 Media descriptor

0xF0
3.5" Double Sided

5.25" Double Sided

0xF8 Fixed disk (i.e. Hard disk)

0xF9
3.5" Double sided,

5.25" Double sided,

0xFA 5.25" Single sided,

0xFB 3.5" Double sided,

0xFC 5.25" Single sided

0xFD 5.25" Double sided,

0xFE 5.25" Single sided

0xFF 5.25" Double sided,

Same value of media descriptor should

be repeated as first byte of each copy of
FAT. Certain operating systems

0x16 2 Sectors per File Allocation Table for

FAT12/FAT16, 0 for FAT32

0x18 2 Sectors per track for disks with
geometry, e.g., 18 for a 1.44MB floppy

0x1A 2 Number of heads for disks with

geometry, e.g., 2 for a double sided

floppy

0x1C 4 Count of hidden sectors preceding the

partition that contains this FAT volume.

This field should always be zero on
media that are not partitioned.

0x20 4 Total sectors (if greater than

65535; otherwise, see offset

0x13)

 Formula’s to assist in the location of important

areas on the File System FAT16 and FAT32.

Root Sectors = Root Directory Entries * 32 / Bytes

Per Sector

FAT Sectors = Number of FATs * Sectors Per FAT

Data Sectors = Total Sectors – (Reserved Sectors +

FAT Sectors + Root Sectors)

Total Clusters = Data Sectors / Sectors Per Cluster

 To locate the start sector of the data area you

can use the following formula:

Data Area Start = Reserved Sectors + FAT Sectors

+ Root Sectors

 Root Directory Details; FAT12 and FAT16

volumes have the root directory located

immediately following the file allocation tables.

The following formula gives you the starting sector

number for the root directory:

Root Starting Sector = Reserved Sectors + FAT

Sectors

 On FAT32 volumes the root directory is made

up of an ordinary cluster chain. A field in the Boot

Record will tell you the initial cluster number. Once

you’ve got the initial cluster number you can easily

get the starting sector number for FAT32 as well:

Root Starting Sector = ((Root Cluster – 2) * Sectors

Per Cluster) + Data Area Start

 Now that we have a general understanding of

FAT16 and FAT32 we can use HxD Hex editor to

view the inner workings of the file systems. Figure

5 illustrates the first 36 bytes of the FAT file

system all in sector 0 of the drive. Table 1 can also

be used to identify the different parts of that

section.

Figure 5

Boot Sector Common Structure of FAT16 and FAT32

 With the information selected in Figure 2 and

using Table 1 we can find the following:

OEM Name = MSDOS5.0

Bytes per Sector = 512 bytes

Sectors per cluster = 64 Sectors

 With the information gathered we can

determine the cluster size of the file system.

Cluster Size = (Bytes per Sector) x (Sectors per

cluster) = (512 bytes) x (64 Sectors) = 32,768 bytes

= 32KB

 All of this data can be gathered using

automated tools but the point of this exercise is to

look at the raw data of the file system and

understand it.

NTFS FILE SYSTEM

 The Windows NT file system (NTFS) provides

a combination of performance, reliability, and

compatibility not found in the FAT file system. It is

designed to quickly perform standard file

operations such as read, write, and search - and

even advanced operations such as file-system

recovery - on very large hard disks.

 Formatting a volume with the NTFS file

system results in the creation of several system

(metadata) files such as $MFT - Master File Table,

$Bitmap, $LogFile and others, which contains

information about all the files and folders on the

NTFS volume.

 The first information on an NTFS volume is

the Partition Boot Sector ($Boot metadata file),

which starts at sector 0 and can be up to 16 sectors

long. This file describes the basic NTFS volume

information and a location of the main metadata file

- $MFT. [4]. Figure 6 illustrates the NTFS file

structure.

Figure 6

Layout of an NTFS Volume

 The NTFS file system includes security

features required for file servers and high-end

personal computers in a corporate environment.

The NTFS file system also supports data access

control and ownership privileges that are important

for the integrity of critical data. While folders

shared on a Windows NT computer are assigned

particular permissions, NTFS files and folders can

have permissions assigned whether they are shared

or not. NTFS is the only file system on Windows

NT that allows you to assign permissions to

individual files.

The NTFS file system has a simple, yet very

powerful design. Basically, everything on the

volume is a file and everything in a file is an

attribute, from the data attribute, to the security

attribute, to the file name attribute. Every sector on

an NTFS volume that is allocated belongs to some

file. Even the file system metadata (information

that describes the file system itself) is part of a file.

 The NTFS file system views each file (or

folder) as a set of file attributes. Elements such as

the file's name, its security information, and even

its data, are all file attributes. Each attribute is

identified by an attribute type code and, optionally,

an attribute name. See Table 2.

Table 2

Lists all of the File Attributes currently defined by the NTFS

File System

Hex

Code

Attribute

Type
Description

0x10 Standard

Information

Includes information such as timestamp and

link count.

0x20 Attribute

List

Lists the location of all attribute records that

do not fit in the MFT record.

0x30 File Name A repeatable attribute for both long and

short file names. The long name of the file

can be up to 255 Unicode characters. The

short name is the 8.3, case-insensitive

names for the file. Additional names, or

hard links, required by POSIX can be

included as additional file name attributes.

0x50 Security

Descriptor

Describes who owns the file and who can

access it.

0x80 Data Contains file data. NTFS allows multiple

data attributes per file. Each file typically

has one unnamed data attribute. A file can

also have one or more named data

attributes, each using a particular syntax.

0x40 Object ID A volume-unique file identifier. Used by the

distributed link tracking service. Not all

files have object identifiers.

0x100 Logged

Utility

Stream

Similar to a data stream, but operations are

logged to the NTFS log file just like NTFS

metadata changes. This is used by EFS.

0xC0 Reparse Used for volume mount points. They are

Point also used by Installable File System (IFS)

filter drivers to mark certain files as special

to that driver.

0x90 Index Root Used to implement folders and other

indexes.

0xA0 Index

Allocation

Used to implement folders and other

indexes.

0xB0 Bitmap Used to implement folders and other

indexes.

0x70 Volume

Information

Used only in the $Volume system file.

Contains the volume version.

0x60 Volume

Name

Used only in the $Volume system file.

Contains the volume label.

 When a file's attributes can fit within the MFT

file record, they are called resident attributes. For

example, information such as filename and time

stamp is always included in the MFT file record.

When all of the information for a file is too large to

fit in the MFT file record, some of its attributes are

nonresident. The nonresident attributes are

allocated one or more clusters of disk space

elsewhere in the volume. If all attributes cannot fit

into one MFT record NTFS creates additional

MFST records and puts the Attribute List attribute

to the first file's MFT record to describe the

location of all of the attribute records.

 When you format an NTFS volume, the format

program allocates the first 16 sectors for the $Boot

metadata file. First sector, in fact, is a boot sector

with a "bootstrap" code and the following 15

sectors are the boot sector's IPL (initial program

loader). To increase file system reliability the very

last sector an NTFS partition contains a spare copy

of the boot sector.

 BIOS parameter block, often shortened to

BPB, is a data structure in the Volume Boot Record

describing the physical layout of a data storage

volume. On partitioned devices, such as hard disks,

the BPB describes the volume partition, whereas,

on unpartitioned devices, such as floppy disks, it

describes the entire medium.

 The following table (Table 3) describes the

fields in the BPB and the extended BPB on NTFS

volumes. The fields starting at 0x0B, 0x0D, 0x15,

0x18, 0x1A, and 0x1C match those on FAT16 and

FAT32 volumes.

Table 3

BPB and the extended BPB

Byte

Offset

Field

Length
Field Name

0x0B WORD Bytes Per Sector

0x0D BYTE Sectors Per Cluster

0x0E WORD Reserved Sectors

0x10 3 BYTES always 0

0x13 WORD not used by NTFS

0x15 BYTE Media Descriptor

0x16 WORD always 0

0x18 WORD Sectors Per Track

0x1A WORD Number Of Heads

0x1C DWORD Hidden Sectors

0x20 DWORD not used by NTFS

0x24 DWORD not used by NTFS

0x28 LONGLONG Total Sectors

0x30 LONGLONG Logical Cluster Number for the file
$MFT

0x38 LONGLONG Logical Cluster Number for the file

$MFTMirr

0x40 DWORD Clusters Per File Record Segment

0x44 DWORD Clusters Per Index Block

0x48 LONGLONG Volume Serial Number

0x50 DWORD Checksum

 TFS includes several system files, all of which

are hidden from view on the NTFS volume. A

system file is one used by the file system to store its

metadata and to implement the file system. System

files are placed on the volume by the Format utility.

[5].

 Now that we have a general understanding of

NTFS file system we can use HxD hex editor to

view the raw data of the file system. Figure 7

illustrates an NTFS partition with the BPB of the

the Boot sector that according with Table 3 are

bytes 0x0B to 0x50.

Figure 7

BPB of the Boot Sector

 Using Table 3 we can find the following:

Sector Size has a value of 0x0200 (512 DEC) =

Sector Size of 512 Bytes.

Sectors per cluster has a value of 0x0004 (04 DEC)

= 4 Sectors per cluster.

$MFT’s location should be in byte 0x30 and

it’s an 8 byte address.

 The Hex Value is 0x000000000002AD10 =

175,376. $MFT is located at cluster 175,376.

 With the information gathered we can

determine the sector in which $MFT is located:

Location of $MFT = Sectors per cluster * Starting

Cluster of $MFT = 4 * 175,376 = 701,504

 $MFT is located at Sector 701,504.

 All of this data can be gathered using

automated tools but the point of this exercise is to

look at the raw data of the file system and

understand it.

CONCLUSION

This tutorial should be considered as a good

recourse in the understanding of FAT16, FAT32

and NTFS file systems. Since Digital Forensics is

an evolving field, knowing the inner workings and

structure of the main file systems help a great deal

in the process of data gathering and recovery.

Giving the reader the necessary knowledge to

understand how data is stored and handled by the

different file systems.

REFERENCES

[1] “FAT16 - Computing Knowledgebase”, Retrieved on Oct

19, 2011, http://pc.wikia.com/wiki/FAT16.

[2] “FAT32 - Computing Knowledgebase”, Retrieved on Oct

19, 2011, http://pc.wikia.com/wiki/FAT32.

[3] “FAT - Forensics Wiki”, Retrieved on Oct 19, 2011,

http://www.forensicswiki.org/wiki/FAT#FATs.

[4] “NTFS.com File System Structure, Recovery Software,

Hard Disk Internals.”, Retrieved on Oct 21, 2011,

http://www.ntfs.com/.

[5] “NTFS - Wikipedia, the free encyclopedia”, Retrieved on

Oct 21, 2011, http://en.wikipedia.org/wiki/NTFS.

[6] “File Allocation Table”, Retrieved on Oct 21, 2011,

http://www.isdaman.com/alsos/protocols/fats/nowhere/FA

T.HTM.

